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Abstract

Image segmentation plays an important role in informa-
tion extraction. This project focuses on the use of machine
learning techniques to segment regions of Foraminifera im-
ages into one of five classes, viz. ’Background’, ’Cham-
ber’, ’Edge between Background and Shell’, ’Edge between
Chambers’, and ’Aperture’. The report compares PCA and
Forward Feature Selection Technique for Feature Reduc-
tion. It further compares the performance of Support Vector
Machine with a Supervised Clustering technique for classi-
fication. The best performance is obtained with SVM-FFS1
technique, with an F1-Score of 0.7039.

Keywords: Foraminifera, Feature Reduction, Principal
Component Analysis, Forward Feature Selection, Support
Vector Machines, Supervised Clustering

1. Introduction

Foraminifera (Forams for short) are single-celled protists
with shells. The shells are commonly divided into cham-
bers, which are added during growth. Depending on the
species, the shell may be made of organic compounds, sand
grains and other particles cemented together, or crystalline
calcite [1].

1.1. Dataset

The provided training dataset is spread over 40 different
Forams. Each Foram is described by 8 lighting conditions,
which are further divided into cells of 40 pixels. Each cell
in a given lighting condition is described by a set of 10 fea-
tures, leading to a set of 80 features per cell for a given
Foram. Figure 1 shows the first Foram in the dataset, in all
8 lighting conditions.

The 10 features describing each cell, in each lighting
condition are listed below:

1. mean scale40 Mean intensity value over a neighbor-
hood of size 40

Figure 1. 8 lighting conditions of a sample Foram

2. std scale40 Standard deviation of intensity values over
a neighborhood of size 40

3. FX scale40 Gradient in the x-direction using a
smoothing kernel of scale proportion to 40

4. FY scale40 Gradient in the y-direction using a
smoothing kernel of scale proportion to 40

5. magnitude scale40 Magnitude of gradient

6. mean scale80 Mean intensity value over a neighbor-
hood of size 80

7. std scale80 Standard deviation of intensity values over
a neighborhood of size 80

8. FX scale80 Gradient in the x-direction using a
smoothing kernel of scale proportion to 80

9. FY scale80 Gradient in the y-direction using a
smoothing kernel of scale proportion to 80

10. magnitude scale80 Magnitude of gradient
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Figure 2 shows an example of these features for the first
Foram in the first lighting condition.

Figure 2. 10 features for one lightning condition of a sample Foram

In this project, we first select a subset of features from
the larger set of 80 features, and then use this subset for cre-
ating a classification model. This model is then further used
for classification of cells of Forams, and evaluated based on
the F-score, Precision, and Recall [2].

The rest of the report is divided into three sections,
namely, the Approach, Results, and Conclusion. The Ap-
proach section, which is the major part of this report, de-
scribes the problem and explains how to select a subset
of features, and further discusses the implementation of
classifiers for the classification of cells. The next section
presents and discusses the results obtained from the simula-
tions which were run using MATLAB. Finally, the Conclu-
sion section talks about what was learned from the project
and concludes it.

2. Approach

The available data has a total of 80 features for each sam-
ple. The first step is to reduce the number of features, by
either feature reduction or selection of a subset from the set
of original features. Both the methods are discussed in this
section. Next, the test cells are classified using a classifier.
In this project, we compare performance of the SVM clas-
sifier and a Supervised Clustering algorithm.

2.1. Feature Selection

Two feature selection methods are implemented and
compared. The first method evaluated in this report is the
Principal Component Analysis, and the second method is
Forward Feature Selection. These methods are further dis-
cussed in the following subsections.

2.1.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical proce-
dure that uses the results from the Karhunen-Loeve trans-
form to reduce the dimensions of a given data set by making
use of variables called principal components. These princi-
pal components are nothing but the Eigen vectors of the co-
variance matrix of the data. In our case, we originally had
80 features, so we will get a covariance matrix of 80x80.
After performing Eigen Value Decomposition, we get 80
Eigen vectors, as expected. The major Eigen vector defines
the direction of the best fitting line, and is expected to give
best separation in 1-D space. We select the top 12 Eigen
vectors to project the data onto a 12 dimensional space. A
2-D to 1-D reduction is illustrated in figure 3.

Figure 3. Projection using PCA

2.1.2 Forward Feature Selection

Before creating a training model, a subset of features must
be selected from the 80 features that are available. This is
done so as to enhance the generalization and avoid over-
fitting. In this project, a forward feature selection tech-
nique is also evaluated in order to select the most significant
features.

In the first iteration, all the 80 features are evaluated indi-
vidually, using the target classifier, and a k-cross validation
(k = 10). The feature with the best performance is selected,
call it x1, and added to an array of selected features. In
the next iteration, all possible combinations of pairs of fea-
tures, where the first feature is x1 and the second feature is
selected from the remaining 79 features are evaluated. The
best combination is then added to the array, say x1, x2. The
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performance of the classifier with features x1, x2 is com-
pared with the performance of the classifier with x1, and
x2 is only accepted if the performance with x1, x2 is supe-
rior. The process continues until an optimum combination
is found.

Generalizing, in the ith iteration, the best perform-
ing feature, xi is selected based on the performance with
the target classifier. xi is added to the array of selected
features only if the performance of the classifier using
x1, x2, ....., xi−1, xi is better than x1, x2, ....., xi−1, and
further iterations are performed as long as i < N , where
N is the total number of features. The selection process is
terminated if the performance is found to be inferior. For
this method, a subset of 10 features was obtained. This fea-
ture extraction method is referred to as FFS-1 in the rest of
the report.

The above described method has a very high time com-
plexity. In order to reduce the time complexity, an assump-
tion of the features being independent is made. This means,
only one iteration is evaluated, and the top 12 features are
selected. This method is referred to as FFS-2 in the rest of
the report. The performance of both approaches is further
compared in table 1.

2.2. Classification

Two methods are implemented in this project in order to
classify cells into one of the five classes. The first method
uses Support Vector Machines while second method uses
Supervised Clustering for classification. These methods
are further discussed in the subsections below.

2.2.1 Support Vector Machines

Figure 4 shows a case for separable data, where two possi-
ble hyper-planes are shown. Both of these planes correctly
separate the data and are viable options for a classifier. But,
the dotted plane is a better option, since it is more gener-
alized. SVM selects the most generalized case from all the
possible cases.

SVM is also known as a maximum margin classifier,
since it maximizes the difference vector x̄+ − x̄−, as seen
in figure 5, in order to select the optimal hyper-plane.

In case of non-linear data, a kernel functional must be
used to transform the features into a linear space. Data in
this project, as is the case with most real world data, is non-
linear. We have used the radial basis function to transform
the data into a higher dimensional space, where the data is
linearly separable. The radial basis functional is defined as
in equation 1.

K(x, z) = e−
||x−z||2

2σ2 (1)

Figure 4. Possible for separable data

Figure 5. Possible for separable data

2.2.2 Supervised Clustering

The training set of clusters are interpreted as existing clus-
ters, and the samples are to be assigned to one of these clus-
ters. Distances from each data point in each cluster are cal-
culated, and the data point with minimum distance is se-
lected to represent each cluster. The test sample is assigned
to the cluster with the closest cluster representative. The
algorithm is represented in equation 2.

d(TS,CRi) = min(d(Cij , TS)) (2)

Where TS is the test sample, CRi is the ith cluster rep-
resentative, and Cij is the jth sample of the ith cluster.

The test sample is assigned to the cluster with
distance = min(d(TS,CRi))
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3. Results
The following methods have been evaluated in this re-

port:

1. PCA-SVM - PCA for Feature Reduction, and SVM
for Classification

2. FFS1-SVM - FFS1 (as described in section 2.1.2) for
Feature Reduction, and SVM for Classification

3. FFS2-SVM - FFS2 (as described in section 2.1.2) for
Feature Reduction, and SVM for Classification

4. PCA-SC - PCA for Feature Reduction, and Supervised
Clustering for Classification

5. FFS1-SC - FFS1 (as described in section 2.1.2) for
Feature Reduction, and Supervised Clustering for
Classification

6. FFS1-SC - FFS1 (as described in section 2.1.2) for
Feature Reduction, and Supervised Clustering for
Classification

The dataset of 40 forams has been evaluated using a
k-fold cross-validation technique, with k = 4.

3.1. Segmentation Results

Figure 6. Ground Truth for Foram 38 on the left, Second from left:
PCA-SVM segmentation, Third from left: FFS1-SVM segmenta-
tion, and FFS2-SVM segmentation on the right

Figure 7. Ground Truth for Foram 38 on the left, Second from left:
PCA-SC segmentation, Third from left: FFS1-SC segmentation,
and FFS2-SC segmentation on the right

Figure 6 shows the Ground Truth for the 38th Foram in
the provided dataset, and compares it with the results of
PCA-SVM, FFS1-SVM and FFS2-SVM methods.

Figure 7 shows the Ground Truth for the 38th Foram in
the provided dataset, and compares it with the results of
PCA-SC, FFS1-SC and FFS2-SC methods.

3.2. Precision, Recall, and F-Score

3.2.1 Definitions and Formulas

1. Precision: the number of correctly classified positive
examples divided by the number of examples labeled
by the system as positive [2].

Precision =
tp

tp+ fp
(3)

2. Recall: the number of correctly classified positive ex-
amples divided by the number of positive examples in
the data [2].

Recall =
tp

tp+ fn
(4)

3. Fscore: a combination of the above [2].

Fβ − Score =
(β2 + 1)tp

(β2 + 1)tp+ β2fn+ fp
(5)

Fβ − Score =
(β2 + 1)PrecisionM ∗RecallM
β2PrecisionM +RecallM

(6)

Method Avg Prec Avg Rec Avg F1 - Score Max F1 - Score
PCA-SVM 0.6347 0.6188 0.6270 0.7288
FFS1-SVM 0.7318 0.6616 0.7039 0.8419
FFS2-SVM 0.7255 0.6544 0.6889 0.8005
PCA-SC 0.6176 0.5986 0.6077 0.6511
FFS1-SC 0.6667 0.6174 0.6408 0.6732
FFS2-SC 0.6350 0.6004 0.6170 0.6384

Table 1. Comparision of Precision, Recall, and F1-score for all
implemented methods

4. Conclusion
In this project, combinations of three different feature re-

duction algorithms with two classification techniques have
been evaluated. Of the six possible combinations, the best
performance was obtained with the combination of FFS1
(Forward Feature Selection without Independence assump-
tion) approach for feature reduction and SVM for classifi-
cation. FFS1, in spite of being computationally costly, is a
one time cost, and hence, affordable. The combination of
FFS1 and SVM gives an average F1-Score of 0.7039.
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Abstract

In this report, we propose an image segmentation al-
gorithm based on Markov Random Fields(MRF). Images
are modeled using MRF and probabilities of true labels
given the features are calculated using Energy Minimiza-
tion which includes the weighted node and edge potentials.
The report further discusses additional features that can be
used for the segmentation procedure.

Keywords: Markov Random Field, Hammersley-
Clifford, Expectation Maximization

1. Introduction
Foraminifera (Forams for short) are single-celled protists

with shells. The shells are commonly divided into cham-
bers, which are added during growth. Depending on the
species, the shell may be made of organic compounds, sand
grains and other particles cemented together, or crystalline
calcite [1].

In the previous project, traditional machine learning al-
gorithms were implemented to label regions in the Forams.
Feature reduction techniques such as Principal Component
Analysis, Forward Sequential Selection and Correlation
based feature selection were implemented to avoid overfit-
ting of the data and this reduced feature list was then used
for training the classifier viz. Support Vector Machine and
Minimum Distance Supervised Clustering. An average F1
score of 0.7039 was achieved using Support Vector Ma-
chine and 0.6567 for Supervised Clustering . To further im-
prove the accuracy of the Foram segmentation, we propose
an algorithm based on Undirected Graphical Models.

2. Approach
This section discusses the algorithm for the specific re-

gion segmentation using Markov Random Field.

2.1. Pixel Labeling Task

Each pixel (superpixel in our case) has a set of features
which defines the class for that pixel. Let s represent a sin-

gle superpixel in our image having a feature vector fs asso-
ciated with it. Then for the whole image we have,

f = {~fs : s ∈ S} (1)

where, S is the set of all superpixels defining the image and
f is the vector of features defining this complete image. ~fs
includes reduced set of features selected for the local clas-
sifiers in project 1.1 along with additional features, that will
be defined later in this report.

As we know that each superpixel is given some label ωs

from the predefined set of labels, Λ = {0, 1, 2, 3, 4}. So for
the whole image we have,

Ω = {ωs, s ∈ S} (2)

2.2. Maximum A-Posteriori (MAP) Approach for
Label Assignment

The idea here is to define a probability measure on the
set of all possible labeling and select the most likely one.
P (Ω|f) measures the probability of a labeling, given the ob-
served feature vector f. The goal here is to find an optimal
labeling Ω̂ which maximizes P (Ω|f). This is called as the
MAP estimate.

Ω̂MAP = argmaxΩP (Ω|f) (3)

From Bayes Theorem, we have

p(Ω|f) =
P (f|Ω)P (Ω)

P (f)
(4)

Since P (f) is going to be constant, we can say that

P (Ω|f) ∝ P (f|Ω)P (Ω) (5)

So now we need to define P (Ω) and P (f|Ω) to get the
Probability distribution of the labels in our model.

2.3. Markov Random Field for Modeling

In real images, regions are often homogeneous; neigh-
boring pixels usually have similar properties (intensity,
color, texture etc.). MRF is a probabilistic model which
captures such contextual constraints [4].
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Figure 1. First Order Neighborhood on left, and Second Order
Neighborhood on right

Given an undirected graph G(V,E) where V are the set
of vertices and E the edges connecting the vertices, a set of
random variables X = (Xv) where v ∈ V indexed by V,
form a Markov random field with respect to G if they satisfy
the following properties [5]:

• Pairwise Markov Property: Any two non-adjacent
variables are conditionally independent given all other
variables.

• Local Markov Property: A variable is conditionally
independent of all other variables given its neighbors.

• Global Markov Property: Any two subsets of vari-
ables are conditionally independent given a separating
subset.

To model the image using MRF, we need some basic
building blocks; such as Observation Field and Labeling
Field (hidden), Pixels and their Neighbors, Cliques and
Clique Potentials, Energy Function, Gibbs Distribution.

2.4. Neighborhood

For each pixel, we can define some surrounding pixels as
its neighbors. Neighborhood can be defined in many ways
such as 1st order neighborhood, 2nd order neighborhood, as
shown in figure 1.

2.5. Hammersley-Clifford Theorem

This theorem states that a random field is considered
an MRF if and only if P (Ω) follows a Gibbs Distribution.
Therefore,

P (Ω) =
1

Z
exp(−U(Ω)) =

1

Z
exp(−

∑
c∈C

Vc(ω)) (6)

where Z =
∑

exp(−U(Ω)) is a normalization constant; C
represents a Clique and Vc is the clique potential. So this
theorem provides us an easy way of defining MRF models
via Clique Potentials.

Figure 2. Clique corresponding to node potential on left, and
clique corresponding to edge potential on right

2.6. Clique and Clique Potential

A subset C ⊂ S is called a clique if every pair of pixels
in the subset are neighbors. A clique containing n pixels is
called nth order clique and usually denoted as Cn. The set
of cliques in an image is denoted by C = C1∪C2∪ ...∪Ck

[2].
For each clique c in the image, we can assign a value

Vc(ω) which is called as Clique Potential of c, where ω is
the configuration of the labeling field. From the equation
(6), we know that sum of potentials of all cliques gives us
the energy U(Ω) of the configuration Ω.

U(Ω) =
∑
c∈C

Vc(ω) (7)

U(Ω) =
∑
i∈C1

VC1
(ωi) +

∑
(i,j)∈C2

VC2
(ωi, ωj) (8)

where VC1
is the node potential and VC2

is the edge po-
tential, and the cliques corresponding to them can be seen
in figure 2. These potentials are defined in terms of features
by defining Vc1 and Vc2 as follows:

Vc1 = wni
fni

(9)

Vc2 = weij ||fei − fej ||p (10)

Here, the pth norm is defined as, ||x||p = (
∑

i xi
p)1/p,

xi ∈ x. fn and fe are the set of features used for determin-
ing the node potentials and the edge potentials respectively,
and wn and we are the corresponding weight vectors.

3. Parameter Estimation and Energy Mini-
mization

The target is to find the most probable labeling i.e. we
want to find the Ω that maximizes P (Ω|f), as shown in
equation (11), which can also be achieved by minimizing
the energy function in equation (13).

P (Ω|f) =
1

Z
e(−

∑
i∈c1

wni
fni

)e(−
∑

(i,j)∈c2
weij

||fei−fej ||p)

(11)
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Figure 3. Original Image on Left, and Saturation Image on Right

Ω̂MAP = argmaxΩ P (Ω|f) (12)

U(Ω|f) =
∑
i∈C1

(wni
fni

)+
∑

(i,j)∈C2

(wei ||fei−fej ||p) (13)

Ω̂MAP = argminΩ U(Ω|f) (14)

Before this approach can be used to segment an input im-
age, the parameters for this formulation must be estimated,
i.e. the weight vectors wn and we. This can be done by find-
ing the weight vectors that minimize the energy function for
the labeling over the training data. This is a non-convex op-
timization problem. This can be solved using Simulated
Annealing for minimizing the energy function in (13). An-
other approach to estimating the weight vectors is to use
Expectation-Maximization on equation (11) as discussed in
[3].

4. Classification Features
The features used in the vector fn are the same as the

ones that were obtained after Forward Feature Selection in
project 1.1. For the feature vector fe, we suggest the use of
two features in addition to the features from project 1.1.

4.1. Local Classifier Output

The output from the local classifier implemented in
project 1.1 can be used as a feature for the edge potential,
i.e. in the feature vector fe. Since we used multiple classi-
fiers in the previous project, some combinational approach
such as, maximum voting, or Dempster-Shafer fusion, may
be used to obtain an optimized Local Classifier output. Us-
ing this as a feature ensures smoothness of the final classifi-
cation.

4.2. Saturation

Another additional feature proposed here for the feature
vector fe is saturation. It is seen in figure 3 that saturation
provides a good separation between aperture, chamber, and
background. Hence, may be able to improve the segmenta-
tion.
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Abstract

Image segmentation plays an important role in informa-
tion extraction. This project focuses on the use of Undi-
rected Graphical Models (UGM) to segment regions of
Foraminifera images into different regions. Image modeling
is done as a Conditional Random Field as well as Hidden
Markov Model. The highest F1 score obtained was 0.7365
with an overlap ratio of 0.8997.

Keywords: Foraminifera, Conditional Random Field,
Undirected Graphical Model, Hammersly-Clifford, Hidden
Markov Model, Overlap Ratio

1. Introduction
Foraminifera (Forams for short) are single-celled protists

with shells. The shells are commonly divided into cham-
bers, which are added during growth. Depending on the
species, the shell may be made of organic compounds, sand
grains and other particles cemented together, or crystalline
calcite [1]. In the previous part of this project (Project 1.1),
we used local classifiers such as Support Vector Machine
(SVM) and Fine K-Nearest Neighbor (kNN with k = 1).
In this part of the project we intend to improve the perfor-
mance of classification and segmentation by modeling the
images using Conditional Random Field (CRF).

1.1. Dataset

The provided training dataset is spread over 40 different
Forams. Each Foram is described by 8 lighting conditions,
which are further divided into cells of 40 pixels. Each cell
in a given lighting condition is described by a set of 10 fea-
tures, leading to a set of 80 features per cell for a given
Foram. Figure 1 shows the first Foram in the dataset, in all
8 lighting conditions.

The 10 features describing each cell, in each lighting
condition are listed below:

1. mean scale40 Mean intensity value over a neighbor-
hood of size 40

Figure 1. 8 lighting conditions of a sample Foram

2. std scale40 Standard deviation of intensity values over
a neighborhood of size 40

3. FX scale40 Gradient in the x-direction using a
smoothing kernel of scale proportion to 40

4. FY scale40 Gradient in the y-direction using a
smoothing kernel of scale proportion to 40

5. magnitude scale40 Magnitude of gradient

6. mean scale80 Mean intensity value over a neighbor-
hood of size 80

7. std scale80 Standard deviation of intensity values over
a neighborhood of size 80

8. FX scale80 Gradient in the x-direction using a
smoothing kernel of scale proportion to 80

9. FY scale80 Gradient in the y-direction using a
smoothing kernel of scale proportion to 80

10. magnitude scale80 Magnitude of gradient

1



Figure 2 shows an example of these features for the first
Foram in the first lighting condition.

Figure 2. 10 features for one lightning condition of a sample Foram

There are two types of Ground Truth tables provided for
this data. The old data set has 5 classes viz. background
(class 0), edges between background and chamber (class
1), chambers (class 2), edge between chambers and aper-
ture (class 4) and aperture (class 5). The new data set has
the classes based on the number of regions in the image
viz. background (class 0), aperture (class 1) and chambers
(class 2 and above). We are considering all the chambers in
the same class since the feature values are not going to be
drastically different (class 2).

In this project, we used the subset of features obtained
from Forward Feature Selection (FFS) technique imple-
mented in the previous part of the project and further used
these features to implement a Conditional Random Field
and learn the parameters. This model is then further used
for classification of cells of Forams, and evaluated based on
the Precision, Recall, F-Score [2] and Overlap Ratio [].

The rest of the report is divided into three sections,
namely, the Approach, Results, and Conclusion. The Ap-
proach section, which is the major part of this report, de-
scribes the problem and explains how to learn the parame-
ters for Conditional Random Field and further segments the
Test images. The next section presents and discusses the
results obtained from the simulations which were run using
MATLAB. Finally, the Conclusion section talks about what
was learned from the project and concludes it.

2. Approach
In order to improve the segmentation performance, we

use Conditional Random Fields (CRF), instead of local
classifiers. In order to implement CRF, the UGM toolbox
is used, as suggested in the proposal by group 1 [3], and can

be found for download at [4].

2.1. Conditional Random Fields

Conditional random fields (CRFs) are a probabilistic
framework for labeling and segmenting structured data,
such as sequences, trees and lattices. The underlying idea is
that of defining a conditional probability distribution over
label sequences given a particular observation sequence,
rather than a joint distribution over both label and obser-
vation sequences. The primary advantage of CRFs over
hidden Markov models is their conditional nature, resulting
in the relaxation of the independence assumptions required
by HMMs in order to ensure tractable inference. Addition-
ally, CRFs avoid the label bias problem, a weakness exhib-
ited by maximum entropy Markov models (MEMMs) and
other conditional Markov models based on directed graph-
ical models. CRFs outperform both MEMMs and HMMs
on a number of real-world tasks in many fields, including
bioinformatics, image segmentation, computational linguis-
tics and speech recognition.

2.1.1 Hammersly-Clifford Theorem

We use the Hammersly-Clifford theorem to get the label (Ω)
probability, given the feature vector (F). We consider node
potentials, and pairwise clique potentials (edge potentials)
to be non-negative, and all other clique potentials to be zero.
The Hammersly-Clifford theorem is then given as,

P (Ω|F ) =
1

Z
exp{−(

∑
i∈C1

VC1
(ωi)+

∑
(i,j)∈C2

VC2
(ωi, ωj))}

(1)
Here, Vc1(ωi) are the node potentials for the ith node,

Vc2(ωi, ωj) are the edge potentials for the edge between the
ith and jth node, and Z is the normalizing constant.

The Node and Edge Potentials are further defined in
terms of parameters, wni and weij , and the features, F =
{fi}, as,

Vc1 = wni
fni

(2)

Vc2 = weij ||fei − fej ||p (3)

Where wn is the vector of parameters for node poten-
tials, and we is the vector of parameters for edge potentials.
Further, the features, F = { fi } is a vector of 12 features,
as selected in project 1.1, using Forward Feature Selection.
Also, we add a 13th feature, which is the output of the local
classifier (SVM) from project 1.1.

Before being able to implement the above discussed ap-
proach, the parameters, wn and we must be learned. In this
project, Mean Field Annealing is used to find the parame-
ters that minimize the function P (Ω|F ), equation ??, over
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the training set. Mean Field Annealing is further discussed
in the following section.

[wn, we] = min{wn,we} {
1

Z
e(−

∑
i∈c1

wni
fni

)e
(−

∑
(i,j)∈c2

weij
||fei−fej ||p)}

(4)

2.1.2 Mean Field Annealing

Mean Field annealing (MFA) is a technique for finding a
good minimum of complex functions which typically have
many minima. The mean field approximation of statistical
mechanics allows a continuous representation of the energy
states of a collection of particles. In the same sense, MFA
approximates the stochastic algorithm called simulated an-
nealing. Because computations using the mean transitions
attain equilibrium faster than those using the corresponding
stochastic transitions, mean field annealing relaxes to a so-
lution at each temperature much faster than does stochastic
simulated annealing. This leads to a significant decrease in
computational effort.

The minimization function (minFunc) in the UGM tool-
box provides an option (@UGM Mean Field) to use mean
field annealing for estimation of parameters

2.1.3 Labeling

The UGM Toolbox provides the function UGM Decode *
for finding the labels with maximum probability for the test-
ing images. The function takes in node potentials, edge po-
tentials, and the graph structure as input. We used different
algorithms for decoding such as Iterated Conditional modes
(ICM) and Linear Programming (LinProg).

Iterated Conditional Modes

To maximize the joint probability of a CRF this deter-
ministic algorithm is used which maximizes local condi-
tional probabilities sequentially. The ICM algorithm uses
the Greedy strategy in the iterative local maximization. It
makes two basic assumptions, one based on the contents of
images in general and another based on the noise process
having nothing to do with the image properties. The first
assumption says that neighboring pixels tends to have the
same values while the second assumption says each pixel is
corrupted (flipped) independently, and with some probabil-
ity.

In the basic algorithm, we initialize the nodes to some
starting state values (the states that maximizes the node po-
tentials) and we then start cycling through the nodes in or-
der. When we get to node i, we consider all states that node
i could take and replace its current state with the state that
maximizes the joint potential. We keep cycling through the

nodes in order until we complete a full cycle without chang-
ing any nodes. At this point we reached a local optima of
the joint potential that cannot be improved by changing the
state of any single node. In this project we have used ICM
with restart which is an effective enhancement of ICM al-
gorithm. It suggests that whenever ICM reaches a local op-
tima restart the optimization with a different initial config-
uration. By doing this we may be able to explore different
local optima. After enough restarts and a guarantee that our
restart mechanism has generated all the possible configura-
tions, this procedure will eventually find the global optima.

Linear Programming

A linear programming problem may be defined as the prob-
lem of maximizing or minimizing a linear function subject
to linear constraints. In case of CRFs the problem of com-
puting the optimal decoding can be formulated as a binary
integer linear program and solving this integer program will
yield the optimal decoding. Unfortunately solving integer
program is NP-Hard and the time required to complete is
unpredictable. By relaxing the integer constraints we can
obtain a polynomial-time approximate decoding. In par-
ticular, rather than enforcing the solution in the set {0,1},
we enforce that it is in the interval [0,1]. This makes all
the constraints linear so combined with the linear objective
function this becomes a linear program.

The linear programming relaxation may not always yield
integer solutions however it is known that whenever some
part of the solution is an integer that part of the solution
must be the part of optimal decoding. Further, ignoring the
issues of ties the entire solution will be integers with attrac-
tive potentials.

2.2. Alternative Approach: Hidden Markov Models

Another way to look at this problem of image segmenta-
tion, is to look at it as a sequence of super-pixels. Looking
at the super-pixels as a sequence, a Transition and Emis-
sion matrix may be trained, like in project 2.2. The Transi-
tion and Emission may be further used to predict the states,
given a set of observations, using the Matlab function, hm-
mdecode(). The graph structure in this case would be more
like a directed chain (sequence), rather than what is dis-
cussed in section 2.1.

We have 12 features (selected from the initial 80 fea-
tures using Forward Feature Selection) describing each state
(0, 1, 2, 3, 4). These features are the observations in the
modeling of the Hidden Markov Model. Instead of han-
dling 12 observations for each state, it would be easier to
model a single representative observation, which somehow
describes these 12 features. A good representative would be
the classification result from the Local Classifier used for
Project 1.1. We achieved the best performance with SVM
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in project 1.1, and hence, we use SVM for obtaining the
representative observation for the 12 features.

2.3. Evaluation Metric

We use the evaluation metric as discussed in [2]. In par-
ticular, we use PrecisionM , RecallM , andFscoreM for
multi-class classification which are defined as below:

1. PrecisionM : Precision is the agreement of the data
labels with the positive labels generated by the classi-
fier for each class. Thus, the PrecisionM for l-class
classification is defined as:

PrecisionM =

∑l
i=1

tpi

tpi+fpi

l
(5)

2. RecallM : Recall is the measure of quality of the
classifier to correctly identify the labels. Thus, the
RecallM for l-class classification is defined as:

RecallM =

∑l
i=1

tpi

tpi+fni

l
(6)

3. FscoreM : Fscore is the combination of precision and
recall to measure. It is given as:

FscoreM =
(β2 + 1)PrecisionM ∗RecallM
β2PrecisionM +RecallM

(7)

For our evaluation, we set β = 1, which is referred to
as F1scoreM .

3. Results
The following methods have been evaluated in this re-

port:

1. OD-LP - Old data-set is evaluated, with Mean Field
Annealing for CRF inference and parameter calcula-
tion, while for decoding Linear Programming is used.

Results for each class can be seen in table 1, and aver-
age precision, recall, F1 score, and Overlap Ratio can
be seen in table 6.

Class Precision Recall F1 Score
0 0.9820 0.9596 0.9707
1 0.8681 0.7868 0.8255
2 0.8714 0.8887 0.8800
3 0.0827 0.1286 0.1007
4 0.2200 0.7700 0.3422

Table 1. Precision, Recall and F1 score for old data-set with Linear
Programming as the decoding technique

2. OD-ICM - Old data-set is evaluated, with Mean Field
Annealing for CRF inference and parameter calcula-
tion, while for decoding Iterated Conditional Modes is
used.

Results for each class can be seen in table 2, and aver-
age precision, recall, F1 score, and Overlap Ratio can
be seen in table 6.

Class Precision Recall F1 Score
0 0.9685 0.9600 0.9642
1 0.7308 0.7889 0.7587
2 0.8757 0.8814 0.8785
3 0.2789 0.1802 0.2189
4 0.2286 0.7407 0.3493

Table 2. Precision, Recall and F1 score for old data-set with Iter-
ated Conditional Modes as the decoding technique

3. OD-HMM - Old data-set is evaluated with Hidden
Markov Models.

Results for each class can be seen in table 3, and aver-
age precision, recall, F1 score, and Overlap Ratio can
be seen in table 6.

Class Precision Recall F1 Score
0 0.9903 0.9924 0.9914
1 0.8359 0.9889 0.9060
2 0.8962 0.9500 0.9223
3 0.6471 0.2705 0.3815
4 0.8667 0.3333 0.4815

Table 3. Precision, Recall and F1 score for old data-set with Hid-
den Markov Model

4. ND-LP - New data-set is evaluated, with Mean Field
Annealing for CRF inference and parameter calcula-
tion, while for decoding Linear Programming is used.
Here, we evaluate results for 3 classes, 0 - Background,
1 - Aperture, and 2 - Chambers.

Results for each class can be seen in table 4, and aver-
age precision, recall, F1 score, and Overlap Ratio can
be seen in table 6.

Class Precision Recall F1 Score
0 0.9511 0.9511 0.9511
1 0.2215 0.2681 0.2426
2 0.9560 0.8955 0.9248

Table 4. Precision, Recall and F1 score for new data-set with Lin-
ear Programming as the decoding technique

5. ND-ICM - New data-set is evaluated, with Mean Field
Annealing for CRF inference and parameter calcula-
tion, while for decoding Iterated Conditional Modes is

4



used. Here, we evaluate results for 3 classes, 0 - Back-
ground, 1 - Aperture, and 2 - Chambers.

Results for each class can be seen in table 5, and aver-
age precision, recall, F1 score, and Overlap Ratio can
be seen in table 6.

Class Precision Recall F1 Score
0 0.9529 0.9506 0.9517
1 0.2773 0.2261 0.2499
2 0.9550 0.8958 0.9245

Table 5. Precision, Recall and F1 score for new data-set with Iter-
ated Conditional Modes as the decoding technique

Methods F1ScoreM OR
OD-LP 0.6518 0.9127

OD-ICM 0.6601 0.8997
OD-HMM 0.7365 0.8997

ND-LP 0.7072 0.8809
ND-ICM 0.7091 0.8765

Table 6. Macro-F1 score and Overlap Ratio (OR) for all the algo-
rithm on both old and new dataset

From the above results, it looks like the Hidden Markov
Model approach outperforms all the other discussed ap-
proaches in terms of F1 score as a metric. But, OD-LP is
a better performer in terms of Overlap Ratio of chambers.
A likely reason for this is that, the OD-LP approach does
well with detecting chambers (class 2), but struggles to de-
tect edges between chambers (class 3), and hence bringing
down the F1 score, but not the Overlap Ratio, which is eval-
uated for chambers (class 2).

Figure 3. Ground Truth for Foram 26 on the left, segmentation for
OD-LP in the center, and segmentation using OD-ICM on the right

Figure 4. Ground Truth for Foram 34 on the left, and segmentation
for the same foram using Hidden Markov Model

Classification of the new dataset images is considered
to be a three class classification problem, class 0 for back-

ground, class 1 for aperture and class 2 for chambers. (class
2 and onward samples are considered to be of the same
class since they all belong to the chamber class.) Various
approaches for segmentation using Morphology, Filtering,
Edge Preserving Smoothing, Connected Components are
tried but no algorithm could separate out different regions
of chamber.

Figure 5. Ground Truth for Foram 20 on the left, segmentation for
ND-LP in the center, and segmentation using OD-ICM on the right

4. Conclusion
In this project, images have been modeled as Condi-

tional Random Fields for implementing image segmenta-
tion. Mean Field Annealing was used to minimize the en-
ergy function which consists of the node and edge poten-
tials. The weights then obtained are used for decoding using
Iterated Conditional Modes and Linear Programming. This
approach is further compared with Hidden Markov Model
approach, and it is found that the Hidden Markov Model
outperforms the CRF approach (OD-LP, and OD-ICM), in
terms of F1 score. At the same time, it also provides a ad-
vantage in having a much lower computational complexity
for training compared to CRF, which involves minimiza-
tion of a cost function using Mean Field Annealing. Al-
though, OD-LP gives a marginally better Overlap Ratio for
class 2 (chambers), compared to HMM. A likely reason for
this is that, the OD-LP approach does well with detecting
chambers (class 2), but struggles to detect edges between
chambers (class 3), and hence bringing down the F1 score,
but not the Overlap Ratio, which is evaluated for chambers
(class 2).

So, in terms of F1 score, the best performer is HMM,
with an F1 score of 0.7365, while in terms of Overlap Ratio,
the best performer is OD-LP, with 0.9127.
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