
Project 2.1 : Biobots Activity Detection

Hariharan Ramshankar
NC State University

Raleigh, NC
hramsha@ncsu.edu

Pooja Mehta
NC State University

Raleigh, NC
pmehta@ncsu.edu

Prathamesh Prabhudesai
NC State University

Raleigh, NC
ppprabhu@ncsu.edu

Abstract

Activity recognition from temporal data is an widely
studied problem with far reaching applications especially
in the fitness and health care industries. This report in-
cludes a comparative study between K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and Bagged Trees
approaches based on their F-1 scores and accuracy. The
best performance is obtained by Fine KNN (Single Neigh-
bor) with maximum F1 score of 0.84.

Keywords: activity detection, temporal data, bio-bots,
bagging

1. Introduction
Insect bio-bots have a number of unique advantages like

the ability to crawl into hidden spaces over synthetic robots.
A swarm of such insects could revolutionize the search and
rescue scenario. In the past, researchers at NC State Univer-
sity have exploited the random nature of cockroach move-
ment for mapping collapsed structures. [1] The objective of
this report is to compare the performance of various clas-
sifiers on the data received from the Inertial Measurement
Units (IMU) on the bio-bots. In particular, the ability to
distinguish between left and right movement is analyzed.

2. Dataset Description
Each sample in the dataset is of the form:

1. F train.t - They are the times of the observation (N x 1
matrix)

2. F train.f - They are the feature values (N x 42 matrix)

3. F train.valid - A flag indicating if the sample is valid
(N x 1 matrix)

The features computed over a 1 second time window with
75% overlap are:

1. Mean (of Accelerometer and Gyro values)

2. Variance (of Accelerometer and Gyro values)

3. Skewness (of Accelerometer and Gyro values)

4. Kurtosis (of Accelerometer and Gyro values)

5. Cross Correlation (between Accelerometer and Gyro)

6. Gyro Energy

The ground truth represents 4 different modes or classes:
(0) Stationary, (1) moving in the middle of the arena, (2)
moving Clockwise (CW) on the boundary, and (3) moving
Counter-Clockwise (CCW) on the boundary.

3. Classification
Classification using various classifiers such as, Support

Vector Machine, Logistic Regression, K-means Clustering,
K-Nearest Neighbors etc was performed. The Classification
Learner toolbox was used for training[2]. The best perform-
ing classifiers are described in this section.

3.1. K-Nearest Neighbors

K-Nearest Neighbors (KNN for short) is a non-
parametric, lazy learning algorithm. It is non-parametric
since it does not make any assumptions on the underlying
data distribution. It is useful as in the real world, most of the
time the data does not obey theoretical assumptions. The
term lazy means there is no explicit training phase or it is
very minimal. [3]

Simple KNN algorithm can be stated as follows: [4]

1. For each training example, < x, f(x) >, add the ex-
ample to the list of training examples (training data).

2. Given a query instance, xq to be classified,

• Let x1, x2,, xk denote the k instances from
training data that are nearest to xq .

• Return the class that represents the maximum of
the k instances.

1

K is nothing but the number of neighbors taken into consid-
eration while deciding the class for query instance. When
K = 1, the predicted class of the element is the class
of its closest sample. It is also known as Fine KNN.
We tested Fine KNN with Euclidean, Cosine and Manhat-

Figure 1. KNN Visualization: In this example, k=3. So to classify
xq it takes three nearest neighbors. It can be see that, it is closer
to the two examples from the negative class, and hence will be
classified as a negative example.

tan Distance measures. These distance measures are de-
fined below. Distance is always calculated between two
points and these points are defined by their feature vec-
tors (features as co-ordinates). Consider an n-dimensional
Cartesian space and two points p = (p1, p2, p3, ..., pn) and
q = (q1, q2, q3, ..., qn).

• Euclidean Distance: The Euclidean distance is the
length of the straight line connecting these two points.

deuclidean(p, q) =

√√√√ n∑
i=1

(qi − pi)

.

• Cosine Distance: The cosine distance between these
two points is given as:

dcos(p, q) = 1− p1.q1 + p2.q2 + ...+ pn.qn√
p21 + p22 + ...+ p2n

√
q21 + q22 + ...+ q2n

• City-block distance:The City block distance or Man-
hattan distance between these two points, is the 4-
neighborhood distance.

dcityblock =

n∑
i=1

|pi − qi|

This distance is always greater than or equal to zero.
The higher the similarity, the closer the value is to
zero. Identical points have a distance of zero. Hence,
we got the highest accuracy and F1 score for KNN
using City Block Distance.

3.2. Support Vector Machine

Figure 2 shows a case for separable data, where two pos-
sible hyper-planes are shown. Both of these planes correctly
separate the data and are viable options for a classifier. But,
the dotted plane is a better option, since it is more gener-
alized. SVM selects the hyperplane which has the largest
minimum distance in the training examples.

Figure 2. Possible for separable data

Figure 3. Possible for separable data

SVM is also known as a maximum margin classifier,
since it maximizes the difference vector x̄+− x̄−, as seen
in figure 5, in order to select the optimal hyper-plane.

In case of non-linear data, a kernel functional must be
used to transform the features into a linear space. Data in
this project, as is the case with most real world data, is non-
linear. Testing included using the radial basis function as
well as the polynomial kernel functions for feature space

transformation. Cubic polynomial gave the best results for
the project data.

3.3. Bagged Trees

Bagged Trees is an Ensemble Learning method, where
based on the number of learners, decision trees are created
and an ensemble is formed. Maximum Voting is used to
decide the class for query sample.

Decision Trees are a non-parametric supervised learning
method used for classification and regression. The goal is
to create a model that predicts the value of a target variable
by learning simple decision rules inferred from the data fea-
tures. Bagging is used to reduce the variance and smoother
decision boundaries. Bagging is useful in cases where the
classifiers are unstable i.e a small change in the training set
leads to drastic change in the result.

Figure 4. Decision Tree Example

Figure 4 shows the example of a basic decision tree.
When at every split, if all the features are considered to
make a decision, it is called as Bagged Tree. Algorithm for
Bagged Trees can be stated as follows:

Training Phase:

• Initialize the parameters. D = φ, the ensemble. L, the
number of trainers.

• For i = 1, 2, ..., L Build a decision tree Di. Add it to
the ensemble.

• Return D.

Classification Phase:

• Run D1, D − 2, ..., DL on query sample xq .

• The class with maximum number of votes is chosen as
the label for xq .

4. Results
Results obtained by different classifiers described in sec-

tion 3 are presented below. 10 Fold K-cross validation is
used and the final results are obtained by averaging over the
results obtained on validation sets. Performance of classi-
fier is decided using Precision, Recall and F-score values.

4.1. Definitions: Precision, Recall, and F-Score

1. Precision: The number of correctly classified positive
examples divided by the number of examples labeled
by the system as positive. [6]

Precision =
tp

tp + fp
(1)

2. Recall: The number of correctly classified positive ex-
amples divided by the number of positive examples in
the data. [6]

Recall =
tp

tp+ fn
(2)

3. Fβ Score: a combination of the above.[6]

Fβ − Score =
(β2 + 1)tp

(β2 + 1)tp+ β2fn+ fp
(3)

Fβ − Score =
(β2 + 1)PrecisionM ∗RecallM
β2PrecisionM +RecallM

(4)

4.2. Fine K-Nearest Neighbors

Table 1 shows the precision, recall and F1 score obtained
for each individual class. The KNN algorithm used the city-
block distance metric k = 1. Class 2 suffers a bit while the
others have F1 scores above 0.8.

Class Precision Recall F1 Score
0 0.8327 0.8536 0.8430
1 0.8777 0.8805 0.8791
2 0.8058 0.7913 0.7985
3 0.8523 0.8334 0.8427

Table 1. Fine KNN: average precision = 0.842125, average recall
= 0.8397, F1 Score = 0.8409

4.3. Cubic SVM

Table 2 shows the precision, recall and F1 score obtained
for each individual class. Cubic kernel is used for feature
transformation.

Class Precision Recall F1 Score
0 0.8279 0.8429 0.8304
1 0.8014 0.8408 0.8206
2 0.6990 0.6300 0.6627
3 0.7761 0.7200 0.7470

Table 2. Cubic SVM: average precision = 0.7761, average recall =
0.758425, F1 Score = 0.7672

4.4. Bagged Trees

Table 3 shows the precision, recall and F1 score obtained
for each individual class. As can be seen, Class 2 has more
false negatives than others hence giving the lowest recall.

Class Precision Recall F1 Score
0 0.8303 0.8782 0.8535
1 0.7452 0.9051 0.8173
2 0.7906 0.4439 0.55685
3 0.8389 0.6 0.6996

Table 3. Bagged Trees: average precision = 0.80125, average re-
call = 0.706575, F1 Score = 0.7510.

4.5. Summary

Table 4 shows the average precision, average recall, F1
scores and the accuracy for all the methods tested.

Classifier Avg.
Prec.

Avg.
Rec.

F1
Score Accuracy

Fine
KNN 0.8421 0.8397 0.8409 85.39%

Cubic
SVM 0.7761 0.7584 0.7672 78.94%

Bagged
Trees 0.8013 0.7066 0.7510 77.90%

Table 4. Performance Comparison: Fine KNN, Cubic SVM,
Bagged Trees

It is observed that the highest accuracy and F1 score was
obtained with the Fine KNN classifier. Since the data used
in this project is a time-series data,it is hard to model it using
the theoretical distribution functions. Fine KNN is a non-
parametric algorithm and does not make assumptions about
the data distribution. Hence gives the best performance in
all the classifiers tested.

The cubic SVM also performed well with an F1 score of
0.7672 and an accuracy near 79%. The bagged trees method
was the least effective classifier for this problem with an F1
score of 0.7510 and an accuracy of around 78%.

Looking at the performance for individual classes, since
there are more training samples for class 0 and class 1, we

get higher accuracy for these two classes. Class 2 and Class
3 suffer because of less training samples and considerable
overlap.

5. Conclusion
All the classifiers struggled to differentiate between

Clockwise and Counter-Clockwise Motion of the bio-bots
mainly because of the significant overlap between the fea-
ture vectors describing these classes. Fine KNN produced
better results than the SVM and Bagged Trees methods de-
spite taking far lesser time to train because of its lazy learn-
ing and non-parametric behavior.

References
[1] Alper Bozkurt, Edgar Lobaton, Mihail Sichitiu, ”A

Biobotic Distributed Sensor Network for Under-
Rubble Search and Rescue”, Computer, vol. 49, pp.
38-46, 2016, ISSN 0018-9162. 1

[2] MATLAB Classification Learner Toolbox 1

[3] A Blog explaining various Machine Learning Algo-
rithms. KNN Detailed Explanation 1

[4] http://www.csee.umbc.edu/tinoosh/
cmpe650/slides/K_Nearest_Neighbor_
Algorithm.pdf 1

[5] https://www.cs.rit.edu/˜rlaz/
prec20092/slides/Bagging_and_
Boosting.pdf

[6] M. Sokolova and G. Laplame, ”A Systematic Analy-
sis of Performance Measures for Classification Tasks”,
Information Processing and Management 45, 2009. 3

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf
https://www.cs.rit.edu/~rlaz/prec20092/slides/Bagging_and_Boosting.pdf
https://www.cs.rit.edu/~rlaz/prec20092/slides/Bagging_and_Boosting.pdf
https://www.cs.rit.edu/~rlaz/prec20092/slides/Bagging_and_Boosting.pdf

Project 2.2 : HMM for Biobots Activity Detection

Prathamesh Prabhudesai
NC State University

Raleigh, NC
ppprabhu@ncsu.edu

Pooja Mehta
NC State University

Raleigh, NC
pmehta@ncsu.edu

Hariharan Ramshankar
NC State University

Raleigh, NC
hramsha@ncsu.edu

Abstract

Activity recognition from temporal data is a widely stud-
ied problem with far reaching applications especially in
the fitness and health care industries. In the first part
of the project various classification methods such as K-
Nearest Neighbors (KNN), Support Vector Machine (SVM),
and Bagged Trees were implemented. This report includes
implementation of Hidden Markov Models(HMM) as they
are well known for temporal data classification. It was ob-
served that the F1 score improved from 0.84 to 0.95.

Keywords: activity detection, temporal data, bio-bots, Hid-
den Markov Models, emission, transition

1. Introduction
Insect bio-bots have a number of unique advantages like

the ability to crawl into hidden spaces over synthetic robots.
A swarm of such insects could revolutionize the search and
rescue scenario. In the past, researchers at NC State Univer-
sity have exploited the random nature of cockroach move-
ment for mapping collapsed structures. [1] The objective
of this report is to improve the classification of the data re-
ceived from the Inertial Measurement Units (IMU) on the
bio-bots. In particular, the ability to distinguish between
left and right movement is analyzed.

2. Dataset Description
Each sample in the dataset is of the form:

1. F train.t - They are the times of the observation (N x 1
matrix)

2. F train.f - They are the feature values (N x 42 matrix)

3. F train.valid - A flag indicating if the sample is valid
(N x 1 matrix)

The features computed over a 1 second time window with
75% overlap are:

1. Mean (of Accelerometer and Gyro values)

2. Variance (of Accelerometer and Gyro values)

3. Skewness (of Accelerometer and Gyro values)

4. Kurtosis (of Accelerometer and Gyro values)

5. Cross Correlation (between Accelerometer and Gyro)

6. Gyro Energy

The ground truth represents 4 different modes or classes:
(0) Stationary, (1) moving in the middle of the arena, (2)
moving Clockwise (CW) on the boundary, and (3) moving
Counter-Clockwise (CCW) on the boundary.

3. Classification
Classification using HMM was performed. The Statistics

and Machine Learning Toolbox was used for implementing
the various functions.[3].

3.1. Hidden Markov Model

Hidden Markov Model is statistical Markov Model used
for time series data, with unobserved or hidden states. The
name encodes hidden because of the assumption that the
observation at time t is generated by some process whose
state St is hidden from the observer. The second assump-
tion is that the process satisfies the Markov property, i.e.
given the state St−1 , the next state St is independent of all
other states prior to St−1. In this project, the 4 class labels
correspond to the 4 states and the 42 feature vectors are the
observations. Our goal is to find the sequence of biobots
activities given the observations.

The most likely sequence can be estimated using the
Viterbi algorithm. Baum-Welch algorithm is used to pa-
rameterize the model using the training data.

3.1.1 Baum-Welch Algorithm

The Baum-Welch algorithm is used to find the unknown pa-
rameters of a HMM. It makes use of the forward-backward

1

algorithm. The HMM is described by the parameters: ai,j ,
π and bj(yt). Given the states St with N values, the transi-
tion probabilities are:

ai,j = P (St = j|St − 1 = i)

The initial state distribution is given by

πi = P (S1 = i)

And the probability of observation at time t for state j is

bj(yt) = P (Yt = yt|St = j)

The algorithm can be stated as follows:

1. Begin with some model u(random or preselected)

2. Use the Forward and Backward procedure to deter-
mine the temporal variables.

• Forward Procedure: Let

α = P (Y1 = y1,, Yt = yt, St = i|θ)

Calculate this recursively

α1(1) = piibi(y1)

αj(t+ 1) = bj(yi + 1)

N∑
i=1

αi(t)aij

• Backward Procedure: Calculate βi(t) as:

βi(T) = 1

βi(t) =

N∑
j=1

βj(t+ 1)aijbj

3. Update the model that gives maximum expectation val-
ues:

πi∗ = γi(1)

aij =

∑T−1
i=1 ξij(t)∑T−1
i=1 γij(t)

where

γi(t) = P (Si = i|Y, θ) = αi(t)βi(t)∑N
j=1 αj(t)βj(t)

ξij(t) = P (Si = i, Si+1 = j|Y, θ) =
αi(t)βi(t+ 1)aijbj(yt+1)∑N

i=1

∑N
j=1 αi(t)βi(t+ 1)aijbj(yt+1)

(1)

3.1.2 Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm
for finding the sequence of hidden states that is most likely
to result in a sequence of observations. This sequence is
known as the Viterbi path. The algorithm is ubiquitous in
the communication field and is also heavily used in speech
to text systems. The spoken text is the the observed se-
quence and the hidden cause is the string of text. The
viterbi algorithm finds the most likely string of text given
the acoustic signal.

”Suppose we are given a hidden Markov model (HMM)
with state space S , initial probabilities πi of being in state
i and transition probabilities ai,j of transitioning from state
i to state j.

Say we observe outputs y1, . . . , yT .The most
likely state sequence x1, . . . , xT that produces the
observations is given by the recurrence relations:
V1,k = P

(
y1 | k

)
· πk

Vt,k = maxx∈S
(
P
(
yt | k

)
· ax,k · Vt−1,x

)
Here Vt,k is the probability of the most probable state se-

quence P
(
x1, . . . , xT , y1, . . . , yT

)
responsible for the first

t observations that have k as its final state.
The Viterbi path can be retrieved by saving back pointers
that remember which state x was used in the second equa-
tion. Let Ptr(k, t) be the function that returns the value of
x used to compute Vt,k if t > 1, orkift = 1. Then:

xT = argmaxx∈S(VT,x)
xt−1 = Ptr(xt, t)

Here we’re using the standard definition of argmax.
The complexity of this algorithm is O(T × |S|2).”[2]

3.2. K-Nearest Neighbors

K-Nearest Neighbors (KNN for short) is a non-
parametric, lazy learning algorithm. It is non-parametric
since it does not make any assumptions on the underlying
data distribution. It is useful as in the real world, most of the
time the data does not obey theoretical assumptions. The
term lazy means there is no explicit training phase or it is
very minimal. [4]

Simple KNN algorithm can be stated as follows: [5]

1. For each training example, < x, f(x) >, add the ex-
ample to the list of training examples (training data).

2. Given a query instance, xq to be classified,

• Let x1, x2,, xk denote the k instances from
training data that are nearest to xq .

• Return the class that represents the maximum of
the k instances.

K is nothing but the number of neighbors taken into consid-
eration while deciding the class for query instance. When
K = 1, the predicted class of the element is the class
of its closest sample. It is also known as Fine KNN.
We tested Fine KNN with Euclidean, Cosine and Manhat-

Figure 1. KNN Visualization: In this example, k=3. So to classify
xq it takes three nearest neighbors. It can be see that, it is closer
to the two examples from the negative class, and hence will be
classified as a negative example.

tan Distance measures. These distance measures are de-
fined below. Distance is always calculated between two
points and these points are defined by their feature vec-
tors (features as co-ordinates). Consider an n-dimensional
Cartesian space and two points p = (p1, p2, p3, ..., pn) and
q = (q1, q2, q3, ..., qn).

• Euclidean Distance: The Euclidean distance is the
length of the straight line connecting these two points.

deuclidean(p, q) =

√√√√ n∑
i=1

(qi − pi)

.

• Cosine Distance: The cosine distance between these
two points is given as:

dcos(p, q) = 1− p1.q1 + p2.q2 + ...+ pn.qn√
p21 + p22 + ...+ p2n

√
q21 + q22 + ...+ q2n

• City-block distance:The City block distance or Man-
hattan distance between these two points, is the 4-
neighborhood distance.

dcityblock =

n∑
i=1

|pi − qi|

This distance is always greater than or equal to zero.
The higher the similarity, the closer the value is to
zero. Identical points have a distance of zero. Hence,
we got the highest accuracy and F1 score for KNN
using City Block Distance.

3.3. Implementation

Two methods were implemented to train the HMM. The
first one involved Gaussian Mixture Model, but as there
were not enough observations to capture the variability of
the data, results were not good.

In the second method, output from a local classifier was
used to estimate the HMM parameters and train the model.
KNN local classifier was used as it gave the best perfor-
mance in terms of F1 score, as tested in project 2.1. Detailed
implementation is as follows:

1. Implement KNN classifier to predict each label using
k-fold cross validation. This would give a sequence of
time series data.

2. Using the output of KNN as the input sequence and the
ground truth table of the training data as the states, esti-
mate the transition and estimation matrices using ’hm-
mestimate’ function.[3] This function calculates the
Maximum Likelihood Estimate(MLE) of the transition
and emission probabilities of a HMM for a sequence
with known states. The estimated matrices are both of
size 4x4. Input sequence is an output of the local clas-
sifier so has range from 0 to 3 (4 different classes) and
even the states are also 4. Hence both the sizes are 4x4.

3. Improve the estimated transition and emission matri-
ces using the ’hmmtrain’ function.[3] To this function,
we feed the output of the fine KNN classifier and use
the Baum-Welch algorithm. The data is provided se-
quentially here as HMM is time dependent.

4. Determine the conditional probability that the model
is in a particular state that generates the symbol, given
that the sequence is generated. Use ’hmmdecode’ us-
ing the estimated parameters produced in step 3.[3]

5. Generate the confusion matrix using ’confusionmat’ to
determine precision, recall along with F1 scores.[3]

3.4. Dealing with the Missing Data

In project 2.1, only the valid data (where all the 42 fea-
ture values are present) is used. In practice, because of var-
ious reasons such as communication loss, measurement de-
vice irregularity etc., the data (features) gets lost. The al-
gorithm should be able to predict the states for such states
where some or all the features are not available to describe
it. It can be dealt two ways.

3.4.1 Interpolation

This is a time series data with 75% (considerable) overlap
between two measurements. Due to the overlap and the
short length (relatively) of the missing data sequences, we

can assume that there won’t be sudden chnages in the states.
This short span of missing features can be assumed to fol-
low the linear nature and can be filled up with linear inter-
polation. After filling up all the gaps, implementation from
section 3.3 can be followed. This assumption hampers the
performance drastically.

3.4.2 Forward Algorithm based prediction

We train the Fine KNN classifier after removing the invalid
data points, but save the indices for future use. The out-
put of the KNN is then expanded to include the blank data
points.To calculate the values for the missing points,we use
the posterior distribution calculated till that point and mul-
tiply it with the transition matrix to obtain the probabilities
for each class. Taking the maximum probability and as-
signing it as the predicted class, we fill blanks for the entire
dataset. After filling the gaps, implementation from section
3.3 can be followed. This assumption produces far better re-
sults compared to the interpolation method described above,
especially for classes 2 and 3.

4. Results
Since the HMM is time dependent, the input to the model

has to be sequential. When the dataset is large, the model
is tested with incremental training and validation sets (in
terms of size of the data). For this project, since data was
limited, 75-25(train-test percentages) and 50-50(train-test
percentages) are used. Performance of classifier is decided
using Precision, Recall and F-score values.

4.1. Definitions: Precision, Recall, and F-Score

1. Precision: The number of correctly classified positive
examples divided by the number of examples labeled
by the system as positive. [6]

Precision =
tp

tp + fp
(2)

2. Recall: The number of correctly classified positive ex-
amples divided by the number of positive examples in
the data. [6]

Recall =
tp

tp+ fn
(3)

3. Fβ Score: a combination of the above.[6]

Fβ − Score =
(β2 + 1)tp

(β2 + 1)tp+ β2fn+ fp
(4)

Fβ − Score =
(β2 + 1)PrecisionM ∗RecallM
β2PrecisionM +RecallM

(5)

4.2. Fine K-Nearest Neighbors

Table 1 shows the precision, recall and F1 score obtained
for each individual class. The KNN algorithm used the city-
block distance metric k = 1. Class 2 suffers a bit while the
others have F1 scores above 0.8.

Class Precision Recall F1 Score
0 0.8327 0.8536 0.8430
1 0.8777 0.8805 0.8791
2 0.8058 0.7913 0.7985
3 0.8523 0.8334 0.8427

Table 1. Fine KNN: average precision = 0.842125, average recall
= 0.8397, Macro F1 Score = 0.8409

4.3. Hidden Markov Model

Table 2 shows the precision, recall and F1 score obtained
for each individual class using 75% training data and 25%
validation data using Viterbi algorithm.

Class Precision Recall F1 Score
0 0.9464 0.9464 0.9463
1 0.9787 0.9559 0.9672
2 0.9190 0.9677 0.9427
3 0.9513 0.9695 0.9603

Table 2. HMM (75-25) Viterbi: average precision = 0.9489, aver-
age recall = 0.9599, Macro F1 Score = 0.9543

Class 1 has a very high precision value of 0.9787 while
class 2 has the lowest value at 0.9190. Recall shows slightly
different characteristics. Class 3 comes out on top with a
value of 0.9695 and class 0 has the least value of 0.9464.
The highest F1 score of 0.9672 is achieved for class 1 with
the lowest score of 0.9427 for class 2.

When compared to the results achieved by the Fine KNN
classifier, we see that even the lowest scores generated by
the HMM are higher than the highest scores achieved by
the KNN classifier.

Table 3 shows the precision, recall and F1 score obtained
for each individual class using 50% training data and 50%
testing data split and the viterbi algorithm.

Class Precision Recall F1 Score
0 0.8801 0.9313 0.9049
1 0.9640 0.9246 0.9438
2 0.9075 0.9282 0.9177
3 0.9500 0.9535 0.9518

Table 3. HMM (50-50) Viterbi: average precision = 0.9254, aver-
age recall = 0.9344, F1 Score = 0.9299.

Class 1 has a high precision value of 0.9640 while class
0 has the lowest value at 0.8801. Recall shows slightly dif-
ferent characteristics.Class 3 comes out on top with a value
of 0.9535 and class 1 has the least value of 0.9246. The
highest F1 score of 0.9518 is achieved for class 3 with the
lowest score of 0.9049 for class 0.

The scores achieved with a 50-50 split are lower than
those achieved with a 75-25 split of the data. This makes
sense, as there is lesser data to train with in the former
case. Still, even with a 50-50 split, the HMM performs
admirably well compared to the best classifier from our
previous approach, i.e, Fine KNN.

Looking at the transition matrix we can glean some in-
formation about the behavior of the bio bot.

0.9617 0.0217 0.0010 0.0155
0.0107 0.9812 0.0038 0.0043
0.0114 0.0398 0.9489 0
0.0086 0.0129 0 0.9785

Table 4. 4x4 Transition Matrix.

The probabilities on the principal diagonal are all close
to 1. This shows the tendency for the bio bot to remain in
its current state between time steps. Also, 2 of the probabil-
ities in the matrix are 0. This implies that the probability of
transitioning from state 2 to 3 or from 3 to 2 is 0. From the
description of the states in the dataset, this means that the
bio bot doesn’t change abruptly from Clockwise to Counter
Clockwise motion or vice-versa according to the HMM.

4.4. Missing Data Estimation

Linear interpolation does produce good results for the
classes 0 and 1 (classes with more data) but it fails to rec-
ognize classes 2 nd 3. It’s because of the assumption that
the data variability will be linear in nature. The F1 score
observed was 0.4563.

Forward Algorithm based approach gives far better re-
sults. We observe a macro F1 score of 0.9281. This is sim-
ilar to the results obtained by using the reduced set of data,
showing the benefits of this approach over linear interpola-
tion, curve fitting and other similar methods.

Class Precision Recall F1 Score
0 0.8242 0.9671 0.9049
1 0.9676 0.8893 0.9438
2 0.9318 0.9152 0.9177
3 0.9410 0.9623 0.9518

Table 5. HMM (75-25) Forward Algorithm : Average precision =
0.9162, Average recall = 0.9334, F1 Score = 0.9247.

4.5. Summary

It is observed that the accuracy and F1 scores improved
after using HMM. This is because HMM includes temporal
analysis of the data and time-series data is hard to model
using only theoretical distribution functions such as KNN.
Also, the structure of the HMM allowed us to fill in missing
data points and retain high accuracy levels, which was not
possible with a KNN.

Looking at the performance for individual classes, since
there are more training samples for class 0 and class 1, we
get higher accuracy for these two classes. Class 2 and Class
3 suffer because of less training samples and considerable
overlap.

5. Conclusion
Both classifiers struggled to differentiate between Clock-

wise and Counter-Clockwise Motion of the bio-bots mainly
because of the significant overlap between the feature vec-
tors describing these classes. But with HMM, there was sig-
nificant increase in accuracy for these two classes. HMM
takes into account the time dependencies, thus providing
a better anaylsis of the data.It was also able to identify
the fact that transitioning from a clockwise movement to
a counter clockwise movement has to happen through the
stop state.

References
[1] Alper Bozkurt, Edgar Lobaton, Mihail Sichitiu, ”A

Biobotic Distributed Sensor Network for Under-
Rubble Search and Rescue”, Computer, vol. 49, pp.
38-46, 2016, ISSN 0018-9162.

[2] https://en.wikipedia.org/wiki/Viterbi algorithm 1

[3] MATLAB Statistics and Machine Learning Toolbox 2

[4] A Blog explaining various Machine Learning Algo-
rithms. KNN Detailed Explanation 1, 3

[5] http://www.csee.umbc.edu/tinoosh/
cmpe650/slides/K_Nearest_Neighbor_
Algorithm.pdf 2

[6] M. Sokolova and G. Laplame, ”A Systematic Analy-
sis of Performance Measures for Classification Tasks”,
Information Processing and Management 45, 2009. 2

4

https://www.mathworks.com/help/stats/index.html
https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf
http://www.csee.umbc.edu/tinoosh/cmpe650/slides/K_Nearest_Neighbor_Algorithm.pdf

